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Abstract
Using the nonlinear σ model on a non-simply connected manifold, we
consider the interaction effects between the elementary excitations (magnons
and skyrmions) and static spin vacancy (hole) in two-dimensional quantum
antiferromagnetic systems. Holes scatter magnons and trap skyrmions. The
phase-shifts of the scattered magnons are obtained and used to calculate the zero
point energy of spin waves measured with respect to the vacuum. It is suggested
that this zero point energy lowers the energy cost of removing spins from the
lattice. We also study the problems of the skyrmion–hole interactions and the
skyrmion–hole (half-skyrmion–hole) bound states in the presence of magnons.
We argue that two adjacent non-magnetic impurities are attracted when they are
placed at the centre of half-skyrmions.

1. Introduction

The effects of impurities in quantum antiferromagnets has been an important topic in condensed
matter physics since the discovery of high-temperature superconductivity. Interactions between
mobile holes have attracted much interest, mainly to get some insight about the pairing
mechanism in high-Tc compounds. In this respect, the static-vacancy problem is an important
limiting model for understanding the interaction of mobile holes through the antiferromagnetic
background. It is known that static impurities induce spin-1/2 degrees of freedom in ladders,
which interact to form gapless excitations in otherwise gapped systems [1, 2]. Besides, it has
been shown that static non-magnetic impurities in the magnetic background can interact via
an effective potential induced by quantum fluctuations [3–5]. In this paper we would like to
consider the interactions between impurities and magnons in two-dimensional (2D) Heisenberg
antiferromagnets. In contrast to chains and ladders, the 2D Heisenberg antiferromagnet is not
dominated by strong quantum correlations. Instead it is believed to be well described by the
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physics of spin waves on top of a Néel ordered state. Therefore, it would be important to study
how magnons and vacancies interact in this model. Besides spin waves, nonlinear excitations
may also be present in the system. Then we also consider the effects of a hole on skyrmions.
Here we examine the simplest case of only one vacancy or some adjacent vacancies, i.e. the
situation with a single hole with arbitrary size, which will depend on the number of neighbour
impurities.

Haldane and, more properly, Chakravarty et al [6–8] have shown that the d+1-dimensional
short-range isotropic Heisenberg antiferromagnetic Hamiltonian in a bipartite lattice H =
J�〈i j〉 �Si · �Sj (where J > 0 is the exchange constant, �Si denotes the spin operator at site i ,
and the sum 〈i, j〉 is over nearest-neighbour pairs) is well described, at low energy and long
length scales, by a quantum nonlinear σ model,

Z =
∫

D�nδ(�n2 − 1) exp(i2π S�[�n]) exp[(i/2ga)

∫
(∂ν �n∂ν �n) dd+1x], (1)

defined in the d + 1-dimensional space xν ≡ (ct, x1, . . . , xd). Here the unit vector �n =
(n1, n2, n3) denotes the Néel sublattice magnetization, g = 2

√
d/S is a dimensionless coupling

constant, ν = 0, 1, . . . , d , ∂ν = [∂0 = (1/c)∂/∂ t, ∂/∂x1, . . . , ∂/∂xd ] and c = 2
√

d J Sa/h̄
is the velocity of the long-wavelength antiferromagnetic spin waves, with a being the lattice
spacing. The exponent �[�n] is a topological factor associated with the Berry phase. Our
interest is in 2 + 1-dimensional antiferromagnets. In two spatial dimensions, the Berry phase
terms vanish [8–11] if the Néel order parameter is continuous as the contributions from each
sublattice cancel.

This paper is organized as follows. In section 2, the motion equations and the elementary
excitations (magnons and skyrmions) are discussed in the approach of the nonlinear σ model.
The impurity model (containing a single hole) is introduced. In section 3, the magnon–hole
interactions are studied and the phase-shifts of the scattered magnons are obtained. In section 4
we consider the skyrmion–hole system, and in section 5 the nature of the interactions between
two adjacent holes (which form a larger single hole) in the pseudo-particle’s background is
studied. Section 6 is dedicated to the hole–skyrmion system interacting with magnons and,
finally, section 7 presents the conclusions and discussions.

2. Equations of motion and pseudoparticles

A useful way of describing the nonlinear σ model is through the stereographic projection [12]
w = (n1 + in2)/(1 + n3). Then we can write w = w1 + iw2, where w1 and w2 describe the
complex number plane with the point at infinity added to it. In terms of these variables, the
Lagrangian associated with the action in equation (1) becomes

L = 2h̄	s

∫ [ |∂0w|2
(1 + |w|2)2

− 4
|∂z̄w|2

(1 + |w|2)2
− 2

(∂zw)(∂z̄w̄) − (∂z̄w)(∂zw̄)

(1 + |w|2)2

]
d2x, (2)

where 	s ≡ J S2/h̄ is the spin stiffness, ∂z = (∂x1 − i∂x2)/2, ∂z̄ = (∂x1 + i∂x2 )/2, z = x1 + ix2

and z̄ = x1 − ix2.
The quantum mechanics of this model can be obtained either via canonical quantization

or path integrals. The former is carried out by first defining the momenta conjugate to w and
w̄, 
 ≡ δL/δ(∂0w̄), 
̄ ≡ δL/δ(∂0w) respectively, and then imposing canonical commutation
relations among the momenta and coordinates. The Heisenberg equation of motion that follows
from the Hamiltonian thus obtained, H = ∫ [
̄∂0w+
∂0w̄−L] d2x , is identical to the classical
equation (when properly ordered) and is given by

∂μ∂μw = 2w̄

1 + |w|2 ∂μw∂μw (3)

2
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or

∂2
0 w − 4∂z∂z̄w = 2w̄

1 + |w|2 [(∂0w)2 − 4∂zw∂z̄w]. (4)

Linearization of this equation leads to the low-energy excitations of the nonlinear σ model,
which are magnons in the Néel phase (when quantized). Therefore, we now turn our attention
to the Néel ordered phase. In this case, �n, or equivalently w, acquires an expectation value
〈n3〉 = 1, 〈w〉 = 0, where we have chosen the order parameter pointing along the 3-direction,
as it will always point in an arbitrary but fixed direction. Small oscillations about the order
parameter, w = ε, are the Goldstone excitations (magnons) of the Néel phase, described by the
linearized equation of motion,

∂μ∂με = 0. (5)

Thus there exist two pure magnon solutions to equation (5), with relativistic dispersions ωq =
cq (where q is the wavenumber) that vanish at long wavelengths, as dictated by Goldstone’s
theorem [13]. Magnons are, of course, spin-1 particles having only two polarizations, as they
are transverse to the Néel ordered field.

Static nonlinear solutions for the complete motion equation (4) are also obtained by
solving ∂zw = 0 (or ∂z̄w = 0). These are the Belavin–Polyakov [12] skyrmion solutions
w = w0 = P0(z)/P1(z) (where Pj are polynomials), which have energy EBP = 4π h̄	s |Q|,
where Q = (1/π)

∫ [(∂zw)(∂z̄w̄) − (∂z̄w)(∂zw̄)]/(1 + |w|2)2 d2x = ±1,±2, . . . is the
topological charge. Topologically, the skyrmions correspond to nontrivial mappings of the spin
space sphere (�n2 = 1) onto the lattice plane (compactified at infinity) and |Q| gives the number
of times that �n wraps around the plane. Here we will be interested only in the fundamental
skyrmion configuration with unit topological charge Q = 1, given by w0 = κ/(z̄ − zs), where
κ and zs are complex parameters associated with the skyrmion size and position, respectively.
We use |κ | = R and |zs | = rs for its size and position in the physical space. Note that, in the
pure system, the skyrmion energy does not depend on R and rs reflecting scale and translational
invariance of the model. All results obtained apply equally to anti-skyrmions Q = −1.

Now we would like to know how these elementary excitations (magnons and skyrmions)
interact with a single hole, i.e. a vacancy obtained by removing a number of neighbouring spins.
We first consider the effect of removing a single spin at the site that we label 0 (origin), which
can be taken into account using the impurity potential [3] V1 = −J

∑4
α=1

�SB
α · �S A

0 , added to the
Heisenberg Hamiltonian. Here A(down, up) and B(up, down) refer to the sublattices and α

labels to the sites neighbouring the vacancy. This can be generalized for two or more adjacent
vacancies. For instance, the potential that represents two nearest-neighbour removed spins at
sites 0 (origin (0, 0)) and 1 ((1, 0)) is V2 = −J

∑4
α=1

�SB
α · �S A

0 − J
∑7

β=5
�S A
β · �SB

1 , where the
sites 5, 6 and 7 are the neighbours to the second spin removed. Such impurity potentials destroy
part of the Néel field. Therefore, to study the interactions between the elementary excitations
and vacancies using the approach of the nonlinear σ model, we modify Lagrangian (2) by
introducing an adequate impurity potential for the continuum limit. Considering the lattice
defect placed at �r0, the simplest picture of a vacancy is the one in which we remove a disk
of radius ρ (centred at �r0) from the magnetic continuous plane. The removed disk creates a
circular hole in the plane [14–16], inside of which the magnetic degrees of freedom vanish
(impurity potential). Then, Lagrangian (2) can be rewritten as

L = 2h̄	s

∫ [ |∂0w|2
(1 + |w|2)2

− 4
|∂z̄w|2

(1 + |w|2)2
− 2

(∂zw)(∂z̄w̄) − (∂z̄w)(∂zw̄)

(1 + |w|2)2

]
Vρ(�r − �r0) d2x,

(6)

where the impurity potential is essentially the step function, i.e. Vρ(�r −�r0) = 0 for |�r −�r0| < ρ

and Vρ(�r − �r0) = 1 for |�r − �r0| � ρ. We notice that cutting a small disk out from the plane is
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equivalent to substituting S by SVρ(�r − �r0) in equation (2), which in turn means that the field
w (or �n) has been removed from a small region around the site �r0. Such a local absence of the
field degrees of freedom in the continuum system is what reproduces the vacancy of some spin
degrees of freedom in the discrete lattice. Suitable boundary conditions will be discussed in
the next section. Therefore, the problem of a non-simply connected magnetically coated plane
is equivalent to the problem of a magnetic plane which is simply connected but contains spin
vacancies (or Néel vectors vacancies) in the pure Lagrangian (2). Of course, since the response
to a vacancy is local, its exact position �r0 is immaterial. In addition, we can consider the size
of the hole to be as small as that for a single vacancy (ρ of the order of the lattice spacing a),
or any size larger than this (for the situation of two or more nearest-neighbour non-magnetic
impurities). In the last case, the hole size ρ (i.e. the range of the impurity potential) would be
related to the number of nearest-neighbour vacancies. For the case of only one vacancy, we
will set ρ ∼ a for the effective hole size and ρ ∼ 2a for the case of two adjacent vacancies.
This simple analytical model is defined on a continuum antiferromagnetic plane with a single
hole, which is a non-simply connected manifold.

3. Magnon–hole interactions

The problem of magnons scattering through a single vacancy in the discrete lattice was studied
and solved exactly by use of the T -matrix formalism [17, 18]. However, it is not a direct task
to obtain the phase-shifts of the scattered magnons from these previous results and so, here, we
study the magnon–vacancy interactions in the continuum approach. The magnetic degrees of
freedom are defined only outside the hole, which can be considered to be centred at the origin,
�r0 = (0, 0). Then, due to the presence of the hole (vacancy), the magnon wavefunctions need
only to be defined in the outer region, r � ρ. Obviously, this problem is completely specified
only if the boundary conditions at r = ρ are given. From the physical point of view, the correct
boundary condition is determined by the requirement of no net flux of spin wave energy into
the hole, which is a region absent of spin degrees of freedom. Of course, the magnon flux is
proportional to �F = ε �∇ ε̄, and then we have either ε = 0 or �∇ε = 0 at the hole boundary.
For instance, consider the square lattice nearest-neighbour Heisenberg antiferromagnet in the
homogeneous Néel state (q = 0) at zero temperature. If one removes a spin from the lattice, the
nearest neighbours of that spin will have a coordination number of three, instead of the bulk-
spin coordination number of four. Therefore, such boundary spins are free to vibrate as the rest
of the neighbouring spins exert forces on them. This corresponds to free boundary conditions at
r = ρ applied to magnon fields. This means that these fields can be set to a non-zero constant
at r = ρ and then the Dirichlet boundary condition leading to �F = 0, i.e. ε = 0, is not useful.
Hence we apply the Neumann boundary condition, �∇ε = 0 (dε/dr = 0), at the hole boundary
r = ρ.

Outside the hole, general solutions to equation (5) are given by (in polar coordinates
�r = (r, ϕ))

εm(r, ϕ, t) = [bm J|m|(qr) + dm N|m|(qr)] exp(−imϕ) exp(−iqct), (7)

where m is the angular momentum channel and Jm(qr), Nm(qr) are the Bessel functions. The
values of the constants bm and dm are determined using the Neumann boundary condition. We
get

εm(r, ϕ, t) = [
J|m|(qr) − tan(�m(q))N|m|(qr)

]
exp(−imϕ) exp(−iqct), (8)

with

�m(q, ρ) = arctan

[ |m|J|m|(qρ) − qρ J|m|+1(qρ)

|m|N|m|(qρ) − qρN|m|+1(qρ)

]
. (9)
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Therefore, solutions (8) are given by phase-shifted cylindrical spin waves

εm(r, ϕ, t) ∝
[

H (1)

|m|(qr) + exp(−2i�m(q, ρ))H (2)

|m|(qr)
]

exp(−imϕ) exp(−iqct), (10)

where �m(q, ρ) = �−m(q, ρ) are the phase-shifts. Here, the phase-shift matrix �mn(q, ρ) is
diagonal, since we have assumed a circular shape for the hole. The asymptotic phase-shifted
spin waves are an indication that the system is affected by the impurity over relatively large
distances. Note that the phase-shifts are extremely sensitive to the hole size ρ.

We remark here that it is not completely clear whether our simple semiclassical approach
(complemented by the use of the Neumann boundary condition at the border of the hole)
is equivalent to excluding spins in the original Heisenberg lattice Hamiltonian, as done, for
example, in [17, 18]. Indeed, a direct comparison of our calculations with the results of the
latter papers is difficult: in these references, no explicit expression for the phase-shift is given
and the magnon density of states is known only as a function of the impurity concentration,
which is a continuum variable. A complete comparison could be carried out only after having
used our results to calculate the dynamic and thermodynamic properties (dynamical structure
factor, specific heat etc) of the system at a low concentration of impurities. Although this is
an interesting problem, it is out of the scope of the paper. At this stage, only some qualitative
remarks can be made. In particular, we notice that equation (9) shows that the spin waves in
the m = 0, 1, 2 angular momentum channels are the most affected by the vacancy and give the
main contributions to the properties of the system, in agreement with the results of [17]. It is
also worth mentioning that the method that we use here works relatively well in other realistic
systems, when compared, for example, to numerical calculations, as is done in [16] for an easy-
plane Heisenberg model on a discrete lattice containing a static hole (removed spin). Therefore,
we believe that, in general, our results lead to good approximations for the magnon–vacancy
interactions in the model considered.

As we have seen, the main effect of the lattice defect (the spin vacancy) is, in the lowest-
order, to produce an elastic scattering centre for the spin waves modifying their wavefunctions.
Therefore, at zero temperature there is a clear distinction in the magnon spectrum when a
vacancy in the spin field is present or absent. This causes a change in the magnon density
of states, which changes the magnon free energy. These results are very important for the
thermodynamics of systems doped with a small concentration of non-magnetic impurities.
Indeed, for a low density of vacancies, the behaviour of small oscillations in regions between
the vacancies will be very similar to the behaviour of such oscillations in the pure system as a
whole. Therefore one can assert that the total change in the magnon density of state is given
approximately by the sum of changes caused by each hole independently. Our calculations
represent a first step in this direction. In addition, these calculations are also important for
other purposes. For example, in section 5 we use the above results to argue that magnon–hole
interactions affect the energy cost of removing spins from the lattice, i.e. the energy cost of
removing a disk from the plane. They will be also useful for studying the interactions between
magnons with a pinned skyrmion (see section 6).

4. Skyrmion–hole interactions

Now we consider the skyrmion–single-hole interactions. Here, a hole placed at the origin
is in the presence of a unit skyrmion of size R centred at a distance |�rs | = rs away. It is
assumed that the hole just excludes the part of the skyrmion configuration that would exist if
the hole were absent, without modifying the remaining spin structure. Such an assumption is
based on numerical results on the discrete lattice by Subbaraman et al [20]. These authors
have shown that a skyrmion centralized at a vacancy has practically the same configuration

5
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Figure 1. Fractional topological charge of skyrmions with R < ρ (dotted line), R = ρ (dashed
line) and R > ρ (solid line) as a function of the skyrmion–hole separation rs (in units of a). The
different types of half-skyrmions discussed in this paper are obtained from the excitations of lowest
energy for the first two cases. Here we have used ρ = 2a and R = 1.5a, 2a and 3a, respectively.

of the Belavin–Polyakov skyrmion. There is only a small deformation in the out-of-plane
structure (polar spin angles) in a small region of radius ∼4a around the hole, while beyond
this distance the deformation vanishes. Other results obtained by numerical simulations on
a discrete lattice for easy-plane magnets also confirm this picture. Such results have shown
that the in-plane structure (azimuthal spin angles) of a vortex is practically unaffected by one
or more vacancies [14, 21], even when the vortex is not centralized at the lattice defect [14].
Indeed, a hole modifies the configuration of these structures only locally, around itself. To
reinforce this argument, we remember that topological excitations are objects that cannot be
made to disappear by any continuous deformation of the order parameter and therefore they
are said to be topologically stable. Then, it is not so easy to deform the configurations of
these structures considerably without giving a large amount of energy. A large deformation
is very costly energetically. Therefore, in the lowest approximation we can neglect possible
small deformations and then, basically, the lowest-order effect of the hole is to decrease
the topological charge (and consequently the energy) of the skyrmion in such a way that
0 < |Q| < 1. This is a consequence of the fact that part of the spin space sphere is not included
in the mapping due to the absence of spins inside the hole. The value of |Q| depends on the
position |�rs | and size R of the skyrmion as well as the hole radius ρ. As we have already said,
the last is associated with the number of adjacent spins removed from the lattice. Removing a
disk of radius ρ placed at the origin from the plane leads to the following topological charge of
the skyrmion placed at �rs :

|Q| ≈ 1 − 2ρ2 R2

(r 2
s + 2rsρ + ρ2 + R2)(r 2

s − 2rsρ + ρ2 + R2)
, (11)

and, therefore, the effective interaction potential between the hole and the skyrmion is attractive
and given by

Ueff(rs) ≈ −8π h̄	sρ
2 R2

(r 2
s + 2rsρ + ρ2 + R2)(r 2

s − 2rsρ + ρ2 + R2)
. (12)

The above results show that the charge is always |Q| � 1/2 (see figure 1). In fact, for
large enough skyrmions (R > ρ), we have |Q| > 1/2 and the minimum energy is achieved for
rs = 0, i.e. when the excitation centre coincides with the hole centre. The pinned-skyrmion
energy decreases as R/ρ decreases, which means that, in the continuum limit, such large
skyrmions must be unstable. The question of the stability of this solution will be discussed
later, after considering the other possible topological structures. On the other hand, for small
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Figure 2. Magnetic plane with a hole. The base of the spin half-sphere makes an angle α with
the vertical line that passes through the north pole (the eye of the stereographic projection). There
are two types of half-skyrmions: when α = π/2, the half-skyrmion is cylindrically symmetric and
its size is equal to the hole size ρ; for 0 < α < π/2, the half-skyrmions are not cylindrically
symmetric, their sizes are smaller than ρ, and their centres are shifted by a distance

√
ρ2 − R2 from

the hole centre.

skyrmions (R � ρ), the minimum energy always arises for |Q| = 1/2, leading to two different
types of half-skyrmion solutions: (1) for R = ρ, the stable half-skyrmion configuration is
cylindrically symmetric, with the excitation centre coinciding with the hole centre (rs = 0)—
the binding energy of this state is −2π h̄	s , and then for half-spin systems it is equal to −1.57 J;
(2) for R < ρ, the equilibrium position of the excitation centre does not coincide with the
hole centre, but it is given by rs = rs(eq) = √

ρ2 − R2. This last small skyrmion does not
have a symmetric configuration. Indeed, for R smaller than ρ, the Néel vector �n has out-of-
plane components pointing up along part of the boundary of the circular hole, while around the
complementary part of the circumference there are out-of-plane components pointing down. It
is important to remark that the relevance of these small structures with R < ρ is not clear. In
general, for half-skyrmions, the spin sphere mapping on the plane consists of a half-sphere, as
shown in figure 2. One can see that, if the angle α = π/2, then the solution is the cylindrically
symmetric skyrmion with R = ρ. However, as α decreases from π/2, the solutions are half-
skyrmions with R < ρ. In this case, the skyrmion centre does not coincide with the hole centre
and the distance between them increases from zero (when α = π/2) to ρ (when α = 0). At
the same time, the skyrmion size decreases as α decreases. For α → 0, the skyrmion size
tends to zero. This is a limiting situation which may not be much relevant for the system.
Half-skyrmion solutions must be relevant only for relatively large holes, ρ > a. Indeed, for
R � ρ ∼ a, the discreteness and quantum effects should be very important. For instance, the
topological charge (11) has no sense for the case R < a, since discreteness effects break the
scale and conformal invariance of the model, and quantum effects (e.g. the Casimir correction
to the skyrmion energy) can cause the skyrmion to collapse. We notice also that it is expected
that the centre of the structures with plausible a < R < ρ, or equivalently 0 < α < π/2, may
develop an orbital circular motion with radius 〈rs(eq)〉 around the hole centre. In conclusion,
the effective potential (12) may produce two possible types of bound states between a hole and
a half-skyrmion. Although the two half-skyrmions have the same energy, they have different
sizes and configurations.

While small skyrmions (|Q| = 1/2) can be stabilized by removing a disk from an infinite
plane and, in view of the fact that fractional skyrmions with topological charge varying between
zero and half (0 < |Q| < 1/2) can also exist if the underlying manifold represents an annulus
with an inner radius ρ and outer radius R [22], we have to mention something about the

7
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conditions of stability of large skyrmions (1/2 < |Q| < 1). As we have already seen, such
excitations seem to be unstable in the continuum approach. In fact, the size of these large
skyrmions pinned to a vacancy can be determined by minimizing Ueff(0) for a given hole size
ρ. This leads to a preferential size for skyrmions given by R = ρ, and so they should decay into
cylindrically symmetric half-skyrmions (at zero temperature). However, the large skyrmions
described above may appear in a discrete lattice for T �= 0, being therefore relevant for the
static and dynamic properties of the system. In fact, structures with |Q| > 1/2 (or equivalently
R > ρ) pinned to non-magnetic impurities were studied numerically in a discrete lattice [20]
and observed experimentally [20, 23] in the nearly classical layered spin-5/2 antiferromagnetic
compounds (C3H7NH3)2Mx Mn1−x Cl4 under non-magnetic doping ions (such as Mg or Cd)
through electron paramagnetic resonance (EPR) measurements.

5. Interactions between adjacent holes in the pseudoparticles’ background

Considering the S = 1/2 Heisenberg antiferromagnet and using the linear spin-wave
approximation, Bulut et al [3] found that the energy cost of removing one spin from an infinite
lattice is E1 = 1.1552 J. They also found that the energy cost of two adjacent vacancies is
E2 = 2.0436 J, which is less than twice the cost of a single vacancy and, therefore, the binding
energy is v = E2 − 2E1 = −0.2666 J. These results compare well with the recent calculations
of Anfuso and Eggert [5] based on a small quantum valence bond character on top of the Néel
order. However, these calculations did not take into consideration the magnon–hole interactions
or the presence of topological excitations. This is the object of this section.

As we have seen in section 3, the main effect of the lattice defect (the spin vacancy) is,
in the lowest order, to produce an elastic scattering centre for the spin waves, modifying their
wavefunctions. Then, at zero temperature there is a clear distinction in the magnon spectrum
when a vacancy in the spin field is present or absent. This distinction, which implies a difference
in the magnon zero-point energy in the presence ( 1

2 h̄ωq ) and absence ( 1
2 h̄ωk) of the hole can

be written as Ezp ∼ (1/2)h̄[∑q ωq − ∑
k ωk] + O(h̄2), where ωq and ωk are the possible

frequencies (for a determined system size L) of the magnons in the presence and absence of
the vacancy defect, respectively. Considering an infinite plane (L → ∞), the discrete sum
becomes an integral, and this zero-point energy becomes

Ezp(ρ) ≈ − h̄

π

∞∑
m=−∞

∫ 1/a

0

∂ωq

∂q
�m(q, ρ) dq, (13)

where we have introduced a cut-off for the integration, assuming a Debye model for the spin
waves. The value 1/a is due to the fact that solid-state systems have a natural cut-off that makes
the theory finite. We suggest that this change in the zero-point energy due to the presence
of the hole is associated with the hole creation energy. Therefore, due to the magnon–hole
interactions, the energy cost to remove a spin from the lattice should be modified to E1+Ezp(a).
For removing two adjacent spins, we have E2+Ezp(2a). In figure 3 we plot Ezp as a function of
the hole size ρ for S = 1/2 antiferromagnets. Then, some estimates can be made. Using ρ ≈ a
for one vacancy, we get Ezp(a) ≈ −0.09 J and hence the energy cost for creating a vacancy
should be lowered, being approximated by E1C ≈ 1.065 J. For two adjacent vacancies, the hole
size is ρ ≈ 2a, leading to Ezp(2a) ≈ −0.06 J, and the energy cost to remove two spins from the
2D antiferromagnet is lowered to E2C ≈ 2 J. The bound energy is v = E2C −2E1C ≈ −0.15 J.
Thus, the interaction energy of two adjacent vacancies may be substantially lower than expected
due to changes in the vacuum fluctuations associated with magnon–hole interaction effects. We
are aware of the fact that this approach does not necessarily give the precise results, since the
strong dependence of the phase-shifts on the hole size makes our estimates not so trustworthy.
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Figure 3. Zero-point energy Ezp (in units of J ) for S = 1/2 as a function of the hole size s = ρ/a.
The phase-shift sum converges rapidly. In our computation we use 61 angular momentum channels
m.

In fact, we do not have the exact dimensions of a hole for one, two or more adjacent vacancies
in this simple analytical model. Therefore, our semiclassical calculations of the energies is not
so rigorous. Nevertheless, our discussion may give some insight about how one can include
corrections due to magnon-impurity interactions (and the Casimir energy).

Now we investigate the nature of the interaction between two adjacent vacancies through
the skyrmion background. The energy of an impurity-pinned skyrmion of generic size R,
centralized at a hole of size ρ is given by (see expression (11))

EI(sk) ≈ 4π h̄	s

[
1 − 2ρ2 R2

(ρ2 + R2)2

]
. (14)

Substituting ρ ≈ a in EBP − EI(sk) = 4π h̄	s[2ρ2 R2/(ρ2 + R2)2], we get the energy cost of
removing one spin located at the origin of an infinite plane containing a skyrmion (also centred
at the origin): ε1 ≈ 8π R2a2h̄	s/(R2 + a2)2. At the same time, the energy cost of removing
two adjacent spins placed about the skyrmion centre from the plane is obtained by substituting
ρ ≈ 2a in 4π h̄	s[2ρ2 R2/(ρ2 + R2)2]: ε2 ≈ 32π R2a2h̄	s/(R2 + 4a2)2. Therefore, there
is an effective interaction potential between two static adjacent spins through the skyrmion
background, which depends on the skyrmion size, given by

u = ε2 − 2ε1 = 16π R2a2(R4 − 4R2a2 − 14a4)h̄	s

(4a2 + R2)2(a2 + R2)2
. (15)

In figure 4 we plot this effective potential of adjacent vacancies as a function of the skyrmion
size R. For skyrmions with R < 2.5a, this interaction is attractive. However, for large
enough skyrmions (R > 2.5a), it becomes repulsive. Skyrmions with size R ≈ 2.5a do
not generate any potential for the impurities at their centres. Note that the hole size is ρ2 ≈ 2a
(the effective size of two adjacent vacancies) and, consequently, skyrmions with sizes equal to
or smaller than this value (e.g. half-skyrmions) tend to create an attractive interaction between
two adjacent impurities put at their centres. In addition, half-skyrmions with R < ρ2 (not
symmetric) induce a stronger effective attractive interaction between the vacancies than the
symmetric ones (R = ρ2). In contrast, large skyrmions give rise to a repulsive interaction. For
the attractive cases, the binding energy is a minimum when R ≈ 0.83a, which leads to a very
strong potential u ≈ −9h̄	s (for spin-1/2 systems, it is equal to −2.24 J). However, this is not a
plausible situation, since R < a. For the more realistic case of a symmetric half-skyrmion with
R ∼ ρ2, we have u ≈ −0.44 J, which is almost twice the binding energy calculated in [3, 5] of
two adjacent vacancies in the absence of topological excitations. Hence, skyrmions generate a
stronger potential (u > v). The fact that half-skyrmions can also bind two holes, as suggested
by our calculations, is of interest for superconductivity, since it may result in a Cooper pairing

9
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Figure 4. Effective interaction energy (in units of h̄	s ) of two adjacent vacancies placed at the
skyrmion centre as a function of the skyrmion size R. We remark that discreteness and quantum
effects should be very important for skyrmions with R < a and so they may collapse. In addition,
large skyrmions (R > ρ) are also unstable in the continuum limit and they may decay in symmetric
half-skyrmions. Then, for this situation, the relevant range of sizes for skyrmions (a < R � ρ2)
implies in an attractive effective potential for two holes.

mechanism. We see, therefore, that half-skyrmions may be of some relevance in quantum spin
systems: first, they are stabilized by the hole (even in the continuum approach); second, these
are excitations which are gapped in the ordered phase, contributing to the physics of the system
only at energy scales larger than their energy. For half-skyrmions, the latter is 2π h̄	s , which is
much smaller than the large skyrmions’ gap. Besides, small skyrmions give rise to an effective
attractive potential between adjacent vacancies and, assuming that the resulting hole–skyrmion
mixtures have metallic mobilities, then such interaction may have some relevance for high-
temperature superconductivity in doped layered antiferromagnets [24, 25].

6. Hole–skyrmion system interacting with magnons

Until now we have considered only the interactions of an isolated hole with either magnons
or skyrmions. A more realistic situation for the two elementary excitations is, however, a
consideration in which they are both present simultaneously around the hole. Therefore, finally
we study the effects of a hole–skyrmion system through the magnon background. As we
have already seen, the skyrmion solution is given approximately by w0 for r > ρ. Hence,
the presence of small deviations ξ(�r , t) (spin waves) modifies the skyrmion structure as
w = w0 + ξ(�r , t). Considering only one scattering centre, i.e. pinned skyrmions centralized
at the hole centre (which implies R � ρ), and substituting w into the motion equation (4),
one obtains, in the linear approximation, the following Schrödinger equation −∇2ξ0 + Uξ0 =
(ω2

q/c2)ξ0, where the potential is given by [25] U = 8[∂z̄ ln(1+|w0|2)]∂z and we have used the
temporal dependence ξ(�r , t) = ξ0(�r) exp(−iωq t). Then, the presence of the potential U in the
region r > ρ changes the solutions εm (see equation (7)) obtained in section 3 and also causes
an elastic centre for spin waves. The phase-shifts cannot be calculated exactly for this case
and hence we apply a usual method: the Born approximation. In the absence of the skyrmion,
the magnon solutions are given by equation (7) and, therefore, the first-order Born term can be
written as δ(1)

m = (−π/2)
∫ ∞
ρ

r dr < εm exp(imϕ)U exp(−imϕ)εm >ϕ , which leads to

δ(1)
m = −π

2

∫ ∞

ρ

r dr [J|m|(qr) − tan �m N|m|(qr)]

×
(

2r

r 2 + R2

d

dr

)
[J|m|(qr) − tan �m N|m|(qr)], (16)
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Figure 5. Magnon phase-shifts P = δ
(1)
0 (q) due to the presence of a topological excitation

centralized at the hole centre. Here we consider the hole size ρ = 2a and the skyrmions sizes
R = 2a (solid line) and R = 4a (dotted line). The dashed line is the function �0. The wavevector
q is in units of 1/a.

and are dependent of the hole size ρ as well as of the skyrmion size R. For impurity systems,
the new magnon wavefunction on the top of a hole–skyrmion can be approximated, in the limit
�r → ∞, as follows:

ξm(�r → ∞, t) ∼ 1
2 [H (1)

|m|(qr) + exp(−2iδ(1)
m (q, ρ, R))H (2)

|m|(qr)] exp(−imϕ) exp(−iqct).

(17)

It is important to say that the resulting phase-shifts are not a simple addition of the contributions
of the hole and of the skyrmion independently. In fact, the interaction skyrmion–hole
transforms the two defects (one in the lattice and the other in the spin field) in only one
object coupling their individual contributions, producing a different scattering. Of course,
one of the differences comes from the absence of spin degrees of freedom inside the hole,
which is the region where the potential U would be stronger with more appreciable variation.
Consequently, it is expected that the hole–skyrmion system produces smaller phase-shifts than
an usual skyrmion. Another difference is associated with the fact that the hole naturally changes
the magnon waveform, which must be taken into consideration around the skyrmion. For
the effect of comparison, it should be interesting to analyse the linear combination of the
individual contributions with the actual phase-shift generated by the hole–skyrmion system.
The individual contribution of the skyrmion in pure systems, γ (1)

m (q), can be obtained by
substituting ρ = 0 and �m = 0 in equation (16). It can easily be calculated analytically and one
gets [25] γ (1)

m (q, R) = 2π Rq Km−1(q R)Im(q R) for m � 1 and γ (1)
m (q, R) = −γ

(1)

1−m(q) for
m < 1. On the other hand, the individual contribution of the hole is given by equation (9)
and therefore we define the relation �m = γ (1)

m (q, R) ± �m(q, ρ), which considers both
contributions (skyrmion and hole). Below, the combined individual contributions �m will be
compared with equation (16) for some particular cases.

We have numerically evaluated the phase-shifts using equation (16) for several finite
lattices up to size L = 200a. Figure 5 plots δ

(1)

0 (q) for a hole of size ρ = 2a and skyrmion
sizes R = 2a, 4a. Besides, we have also plotted the function �0 = γ

(1)
0 (q) − �0(q, 2a).

Note that the magnon wavefunction has a similar behaviour for different skyrmion sizes, but it
is more shifted for the case R = 2a (half-skyrmion). As R increases, the strength of δ

(1)
0 (q)

decreases. Note also that, in the case m = 0, the subtraction (and not the sum) of the individual
contributions produces a function similar to δ

(1)

0 (q). It suggests that, for s-waves, the hole and
the skyrmion contribute to the scattering in an opposite way. However, it is not a definitive
conclusion. For other hole sizes, the similarity between �0 and δ

(1)

0 (q) is not so evident. In
general, the magnon scattering by the hole–skyrmion system, described by the phase-shifts

11
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Figure 6. Magnon phase-shifts P = δ
(1)
1 (q), δ

(1)
2 (q) and δ

(1)
3 (q) due to the presence of a half-

skyrmion centralized at the hole with size ρ = 2a. The angular momentum channels are m = 1
(solid line), m = 2 (dotted line) and m = 3 (dashed line).

δ
(1)
0 (q), have a characteristic that is independent of the individual contributions, at least in part

of the range of q . The main differences arise for large wavevectors. The behaviour of the phase-
shifts for different angular momentum channels m is plotted in figure 6 (also for ρ = 2a). As
expected, δ(1)

m decreases considerably as m increases due to the fact that, for large enough m,
the centrifugal barrier m2/r 2 expels the magnons from the central region of scattering where
U is more appreciable. Here, for the function �m (not shown), it is the sum of the individual
contributions (not the subtraction) that has some similarity with δ(1)

m (q), in contrast to the case
m = 0. Again, �m is much larger than δ(1)

m (q). An interesting fact to be observed (for q not
large enough) is that the intensity of the phase-shifts are larger for m = 1 and even m = 2 than
for the case m = 0 which, in principle, should generate larger scattering, since the centrifugal
barrier is zero. A possible justificative is that the hole and the skyrmion contribute to the
scattering in opposite ways for m = 0, while they are inverse for m �= 0.

The above calculations are useful for perturbation theories involving a skyrmion (half-
skyrmion) response to external perturbations or forces, statistical mechanics and quantization
procedures for skyrmion states. In particular here, unfortunately the trace of equation (16)
vanishes (

∑∞
m=−∞ δ(1)

m (q) = 0) and therefore, using only the first-order Born terms, we cannot
calculate the quantum corrections Ezp to the classical energy of a pinned skyrmion (or half-
skyrmion) as given by equation (13). One may try to calculate the second-order Born terms [25]
but, nevertheless, such calculations are not so trustworthy, as suggested in [29]. In addition, for
a given skyrmion of size R centralized at the hole, the range of the potential U is of the order of
R−ρ and, in particular, for half-skyrmions, the potential has a very small range, restricted to the
region in which its strength is less efficient and, therefore, the second-order Born terms (which
involve an expression proportional to U 2) may be neglected, not contributing substantially to
the quantum corrections. Then, the Born approximation suggests that quantum fluctuations of
half-skyrmions may change their energy only for a very small quantity and may produce only
a small influence on the value of u, i.e. on the attraction between two vacancies put at the
excitation centre.

7. Conclusions and discussions

In conclusion, in this paper we have used a simple analytical model for static holes in
2D quantum antiferromagnets to study the interactions between elementary excitations and
impurities. To the authors’ knowledge, this approach was used for the first time in [26] to
study the vortex behaviour near a non-magnetic impurity in classical easy-plane magnets,

12



J. Phys.: Condens. Matter 19 (2007) 156203 A R Pereira et al

and later [14] improved and extended to the case of many adjacent impurities. For easy-
plane magnets, comparison of the results of this simple model with simulations and numerical
calculations on a discrete lattice has shown good agreement [14–16, 19]. A similar model was
also examined by Saxena and Dandoloff [22] in the context of quantum Hall systems and also
by Morinari [27, 28] in the context of quantum magnetism. Here, the hole breaks the conformal
and translational symmetries of the system, so that there is a preferred size and position for the
nonlinear excitations. Also, for a bound state half-skyrmion–hole, oscillatory motion about the
impurities may be possible. This conclusion is based on the vortex oscillatory motion around
either only one non-magnetic impurity or many neighbouring non-magnetic impurities [14].
Differences from the vortex case may appear for half-skyrmions with R < ρ (not centred at
the hole centre). In this case, the half-skyrmion centre may develop an orbital circular motion
around the hole centre, causing interesting spin correlations at the hole boundary. However, the
study of these possibilities is outside the scope of this paper.

In summary, we have obtained the phase-shifts of linearized spin-wave fluctuations around
a static single-hole of the 2D Néel state. Such phase-shifts are relevant for the study of
the statistical mechanics of 2D antiferromagnets containing a small amount of non-magnetic
impurities in the magnetic sites. In addition, the change in the magnon density of states due
to the presence of the hole suggests that the energies for removing spins from the lattice [3, 5]
may undergo small modifications. We have also considered the interactions between skyrmions
and vacancies and found generic skyrmion solutions, which are dependent on the ratio R/ρ.
Two bound state hole–skyrmions in the limit of small half-skyrmions were found. The nature
of the interaction between two adjacent vacancies placed at the skyrmion centre was studied: it
is attractive for half-skyrmions and repulsive for large skyrmions. Nevertheless, in the relevant
range of skyrmion sizes, a < R � ρ2 (associated with their stability in the continuum approach
and zero temperature) the interaction is always attractive. As suggested by Voruganti and
Doniach [24], if a skyrmion can bind two holes and no more, then the other half of the picture,
namely Cooper pairs, provides an explanation for the superconductivity. Our main assumption
for the calculations is that the hole size is related to the number of adjacent non-magnetic
impurities.
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